Homework 5

1. (Coding problem from last week) Write fast exponentiation code and find ten 10-digit probable primes (with respect to base 2).
2. a) Determine $13^{13^{13}} \% 10$.
b) Determine $13^{13^{13}} \% 15$.
3. Recall that we formulated Garner's fast recursive general Chinese Remainder Theorem in the following way:
Input:
Moduli m_{1}, \ldots, m_{r} with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ when $i<j$.
Representatives $a_{1}, \ldots, a_{r} \in \mathbb{Z}$
Algorithm: Define recursively A_{k} (k th interpolation) and w_{k} (k th weight) by the following:
Intialization:

- $w_{1}:=0$.
- $w_{1}:=A_{1}:=a_{1} \% m_{1}$.

Recursion:

- $w_{k+1}:=\left(a_{k+1}-A_{k}\right)\left(m_{1} \cdots m_{k}\right)^{*} \% m_{k+1}$
- $A_{k+1}:=A_{k}+\left(w_{k+1} m_{1} \cdots m_{k}\right)$,
where $\left(m_{1} \cdots m_{k}\right)\left(m_{1} \cdots m_{k}\right)^{*} \equiv 1 \bmod m_{k+1}$.
A. Show by induction on r that $A_{r}=w_{1}+w_{2} m_{1}+\cdots+w_{r} m_{1} \ldots m_{r-1}$ satisfies the system of congruences

$$
\begin{aligned}
& x \equiv a_{1} \quad \bmod m_{1} \\
& \vdots \\
& x \equiv a_{r} \quad \bmod m_{r}
\end{aligned}
$$

B. At most how many multiplications modulo m_{k} are actually involved in the k th step if we take care to keep the sizes of numbers down? (Ignore those coming from multiprecision considerations and from the Knuth algorithm to compute multiplicative inverses modulo m_{k}.)
4. Let p and q be odd primes with difference $\delta=p-q>0$ and product $n=p q$.
(a) Show that the Fermat factorization method involves $(p+q) / 2-\lceil\sqrt{n}$ increases in x to find x and y such that $n=x^{2}-y^{2}$.
(b) Show that

$$
\left(\frac{p+q}{2}-\sqrt{p q}\right)\left(\frac{p+q}{2}+\sqrt{p q}\right)=\frac{1}{4} \delta^{2} .
$$

(c) Assume that δ is so much smaller than p that we can consider $(p+q) / 2 \approx$ p and $\sqrt{p q} \approx p$. Show that then

$$
\left(\frac{p+q}{2}-\sqrt{p q}\right) \approx \frac{\delta^{2}}{8 p} .
$$

(d) Suppose that p and q are 100 -digit primes (so that $p, q \approx 10^{99}$) and $p-q \approx 10^{80}$ so the most significant 19 or 20 digits are the same. Show that the Fermat algorithm takes approximately 10^{60} increases in x.
(e) If p and q are 100 -digit primes with $p-q \approx 10^{50}$, show that the Fermat method finds the factorization with very few increases in x.
5. We showed in class that if $m, n \in \mathbb{N}$ are relatively prime, then $\phi(m n)=$ $\phi(m) \phi(n)$. Prove by careful induction that if m_{1}, \ldots, m_{r} are pair-wise relatively prime positive integers, then $\phi\left(m_{1} \cdot m_{r}\right)=\phi\left(m_{1}\right) \cdots \phi\left(m_{r}\right)$. You may take $r=2$ as the base case.

