

Homework 5

CSE/MATH 467

Due: 23 September, 2016

1. (Coding problem from last week) Write fast exponentiation code and find ten 10-digit probable primes (with respect to base 2).
2. a) Determine $13^{13^{13}} \% 10$.
- b) Determine $13^{13^{13}} \% 15$.

3. Recall that we formulated Garner's fast recursive general Chinese Remainder Theorem in the following way:

Input:

Moduli m_1, \dots, m_r with $\gcd(m_i, m_j) = 1$ when $i < j$.

Representatives $a_1, \dots, a_r \in \mathbb{Z}$

Algorithm: Define recursively A_k (k th interpolation) and w_k (k th weight) by the following:

Initialization:

- $w_1 := 0$.
- $w_1 := A_1 := a_1 \% m_1$.

Recursion:

- $w_{k+1} := (a_{k+1} - A_k)(m_1 \cdots m_k)^* \% m_{k+1}$
- $A_{k+1} := A_k + (w_{k+1} m_1 \cdots m_k)$,

where $(m_1 \cdots m_k)(m_1 \cdots m_k)^* \equiv 1 \pmod{m_{k+1}}$.

A. Show by induction on r that $A_r = w_1 + w_2 m_1 + \cdots + w_r m_1 \cdots m_{r-1}$ satisfies the system of congruences

$$x \equiv a_1 \pmod{m_1}$$

⋮

$$x \equiv a_r \pmod{m_r}$$

B. At most how many multiplications modulo m_k are actually involved in the k th step if we take care to keep the sizes of numbers down? (Ignore those coming from multiprecision considerations and from the Knuth algorithm to compute multiplicative inverses modulo m_k .)

4. Let p and q be odd primes with difference $\delta = p - q > 0$ and product $n = pq$.

(a) Show that the Fermat factorization method involves $(p + q)/2 - \lceil \sqrt{n} \rceil$ increases in x to find x and y such that $n = x^2 - y^2$.

(b) Show that

$$\left(\frac{p+q}{2} - \sqrt{pq} \right) \left(\frac{p+q}{2} + \sqrt{pq} \right) = \frac{1}{4}\delta^2.$$

(c) Assume that δ is so much smaller than p that we can consider $(p+q)/2 \approx p$ and $\sqrt{pq} \approx p$. Show that then

$$\left(\frac{p+q}{2} - \sqrt{pq} \right) \approx \frac{\delta^2}{8p}.$$

(d) Suppose that p and q are 100-digit primes (so that $p, q \approx 10^{99}$) and $p - q \approx 10^{80}$ so the most significant 19 or 20 digits are the same. Show that the Fermat algorithm takes approximately 10^{60} increases in x .

(e) If p and q are 100-digit primes with $p - q \approx 10^{50}$, show that the Fermat method finds the factorization with very few increases in x .

5. We showed in class that if $m, n \in \mathbb{N}$ are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$. Prove by *careful induction* that if m_1, \dots, m_r are pair-wise relatively prime positive integers, then $\phi(m_1 \cdot m_r) = \phi(m_1) \cdots \phi(m_r)$. You may take $r = 2$ as the base case.